Recent (and upcoming) Testing Results

м

Lighting product testing efforts

- National Lighting Product Information Program (NLPIP)
- Program for the Analysis and Evaluation of Residential Lighting (PEARL)
- ENERGY STAR® "Durability" testing
- Field Test DELTA (Design and Evaluation of Lighting Technologies and Applications)
- Ongoing testing (time permitting)

м

Lighting product testing efforts

- National Lighting Product Information Program (NLPIP)
- Program for the Analysis and Evaluation of Residential Lighting (PEARL)
- ENERGY STAR® "Durability" testing
- Field Test DELTA (Design and Evaluation of Lighting Technologies and Applications)
- Ongoing testing (time permitting)

- Tests lighting products and publishes results for public use: http://www.lrc.rpi.edu/nlpip/
- Research efforts directed by Sponsors
 - □ California Energy Commission
 - □ Iowa Energy Center
 - □ Lighting Research Center
 - New York State Energy Research and Development Authority
 - □ Northwest Energy Efficiency Alliance
 - □ US Department of Energy
 - US Environmental Protection Agency
 - Wisconsin Focus on Energy

NLPIP - Project Updates

- Specifier Reports online databases
 - Screwbase CFLs
 - □ Electronic Ballasts
- Lighting Answers
 - Mid-wattage metal halide lamps
 - □ MR16s
 - □ T5 Systems
- Ongoing Research (will discuss, time permitting)
 - □ SCFLs
 - Instant-start systems
 - Pulse-start metal halide lumen maintenance

NLPIP - Project Updates

- Specifier Reports online databases
 - □ Screwbase CFLs
 - □ Electronic Ballasts
- Lighting Answers
 - ☐ Mid-wattage metal halide lamps
 - □ MR16s
 - □ T5 Systems
- Ongoing Research (will discuss, time permitting)
 - □ SCFLs
 - ☐ Instant-start systems
 - □ Pulse-start metal halide lumen maintenance

Online supplement: SCFLs

http://www.lrc.rpi.edu/nlpip/default.cfm

Online supplement: SCFLs

- •Manufacturer name, model number
- Active Power (W) in Base-Up and Base-Down Positions
- Power Factor (W/VA) in Base-Up and Base-Down Positions
- Current THD (%) in Base-Up and Base-Down Positions
- Light Output (Im) in Base-Up and Base-Down Positions
- Position Factor (Base-Down + Base-Up Light Output)

NLPIP - Project Updates

- Specifier Reports online databases
 - □ Screwbase CFLs
 - □ Electronic Ballasts
- Lighting Answers
 - ☐ Mid-wattage metal halide lamps
 - □ MR16s
 - □ T5 Systems
- Ongoing Research (will discuss, time permitting)
 - □ SCFLs
 - □ Instant-start systems
 - □ Pulse-start metal halide lumen maintenance

Online supplement: Electronic Ballasts

Online supplement (T8 ballasts)

NLPIP measures:

- Operating parameters: power (W), power factor, current THD (%), lamp CCF, and lamp operating frequency
- Starting parameters: Rh/Rc (for rapid start and programmed start ballasts)
- Performance evaluation: ballast factor and ballast efficacy factor (%/W)

м

Other upcoming online supplements

Jan/03-Jun/03: Complete testing 64 T8-ballasts

and post online

Jul/03-Dec/03: Test dimming ballasts

Jan/04-Jun/04: T5 ballast supplementary test

NLPIP - Project Updates

- Specifier Reports online databases
 - □ Screwbase CFLs
 - □ Electronic Ballasts
- Lighting Answers
 - Mid-wattage metal halide lamps
 - □ MR16s
 - □ T5 Systems
- Ongoing Research (will discuss, time permitting)
 - □ SCFLs
 - ☐ Instant-start systems
 - □ Pulse-start metal halide lumen maintenance

Lighting Answers: Mid-wattage Metal Halide Lamps

http://www.lrc.rpi.edu/nlpip/results.cfm?uid=882&title=Mid%2Dw attage%20Metal%20Halide%20Lamps

Lighting Answers: Mid-wattage Metal Halide Lamps

- Answers commonly asked questions
- Helps lighting professionals understand the technology
 - □ how the lamps work
 - differences between quartz and ceramic arc tubes
 - differences between probe-start and pulse-start technologies
 - burning position
 - warm-up and restrike times
- How to choose mid-wattage metal halide lamps for applications

NLPIP - Project Updates

- Specifier Reports online databases
 - □ Screwbase CFLs
 - □ Electronic Ballasts
- Lighting Answers
 - ☐ Mid-wattage metal halide lamps
 - MR16s
 - □ T5 Systems
- Ongoing Research (will discuss, time permitting)
 - □ SCFLs
 - ☐ Instant-start systems
 - □ Pulse-start metal halide lumen maintenance

Lighting Answers: MR16s

n eighth-of-an-inch increments (1 inch equals 2.5 centimeters). The R lamp, the MR16, is 16 eighths of an inch or 2 inches (5 centimete t its largest circumference, hence the name "MR16." Other sizes ind 2.5 centimeters, diameter) and MR11 (1-3/8 inch, or 3.5 centimete The power ratings of MR16 lamps used in architectural lighting appl

http://www.lrc.rpi.edu/nlpip/results.cfm?uid=285&title=MR1 6%20Lamps

Lighting Answers: MR16

- Answers commonly asked questions
- Helps lighting professionals understand
 - □ what MR16 lamps are
 - most important performance characteristics
 - advantages and disadvantages
 - differences between MR16 lamps and other types of reflector lamps
 - heat and quality differences
- provides pointers to lighting professionals on how to choose MR16 lamps for their applications

Figure 2-3. Different MR16 lamp base types

- (a) 2-pir
- (b) medium screwbase with integral transformer
- (c) intermediate screwbase with integral transformer
- (d) turn and lock
- (e) bayon

MR16 Advantages

20-watt R40 CFL

20-watt 40° MR16 lamp

Figure 3-2. Illuminances (lux) on and around the painting from a reflector CFL and an MR16 lamp

20-watt R40 CFL

20-watt 40° MR16 lamp

Figure 3-3. Horizontal centerline illuminance plot of a reflector CFL and an MR16 lamp

^{*1} lux = 0.0929 footcandles

20-watt R40 CFL vs. 20-watt 40° MR16 lamp

NLPIP - Project Updates

- Specifier Reports online databases
 - □ Screwbase CFLs
 - □ Electronic Ballasts
- Lighting Answers
 - ☐ Mid-wattage metal halide lamps
 - □ MR16s
 - □ T5 Systems
- Ongoing Research (will discuss, time permitting)
 - □ SCFLs
 - ☐ Instant-start systems
 - □ Pulse-start metal halide lumen maintenance

Lighting Answers: T5 Systems

http://www.lrc.rpi.edu/nlpip/results.cfm?uid=28 4&title=T5%20Fluorescent%20Systems

Lighting Answers: T5 Systems

- Answers commonly asked questions about T5 lamps, ballasts, and luminaires
- physical characteristics
 - □ dimensions of lamps and ballast
 - luminaire performance
- economic issues benefits of T5 systems
- design and application
 - proper applications of T5 lamps
 - □ advantages and disadvantages of T5 vs.T8 systems

м

Lighting Answers: T5 Systems

"Case study" results

- Temperatures in open luminaires, possibly less than optimal temperature for T5; in closed luminaires, T5 may function better than T8
- Greater optical efficiency fewer luminaires can be used
- Light output comparisons lm/W equivalent with T8, but fewer luminaires could be used
- Economic comparisons if layout permits reduced number of luminaires, T5 uplighting can offer advantage
- Glare concerns T5HO = 3x luminance of T8

м

Lighting product testing efforts

- National Lighting Product Information Program (NLPIP)
- Program for the Analysis and Evaluation of Residential Lighting (PEARL)
- ENERGY STAR® "Durability" testing
- Field Test DELTA (Design and Evaluation of Lighting Technologies and Applications)
- Ongoing testing (time permitting)

10

Program for the Analysis and Evaluation of Residential Lighting (PEARL)

- Watchdog program
- Tests ENERGY STAR luminaires and CFLs that are promoted by market transformation groups
- Data used internally by PEARL sponsors and eventually US DOE and US EPA
- Supported and directed by
 - Utilities
 - □ Public benefits funding agencies

Program for for the Analysis and Evaluation of Residential Lighting (PEARL)

- 3 cycles completed as of December 2002
- 20 CFL products and 10 fixture products are selected per cycle
- Results
 - Some products delisted
 - Some products improved

Lighting product testing efforts

- National Lighting Product Information Program (NLPIP)
- Program for the Analysis and Evaluation of Residential Lighting (PEARL)
- ENERGY STAR® "Durability" testing
- Field Test DELTA (Design and Evaluation of Lighting Technologies and Applications)
- Ongoing testing (time permitting)

- Steele (2002) showed premature failures in ENERGY STAR lighting products
- Premature failures give poor impression to all ENERGY STAR products (copiers, monitors, etc)
- US EPA wants to develop testing procedure to reduce premature failures
- "Durability" testing placeholder in current spec

Goals:

- Develop a simple testing method for "durability" to reduce likelihood of premature failures of ENERGY STAR light fixtures
- Build industry consensus on proposed testing method
- Perform pilot testing to fine-tune proposed testing method
- http://www.lrc.rpi.edu/ltgtrans/energyStarDurability.html

- Consulted other researchers (PNNL)
- Industry roundtable

ENERGY STAR® "Durability"

Testing

- Focused on temperature of ballast
 - Critical locations, as per ballast mfgr
 - Compare rated temp to actual conditions
- Used UL apparatus and procedure

ENERGY STAR® "Durability"

Testing

ENERG Testing

ENERGY STAR® "Durability"

Caveat: Maximum allowable temperatures... performance-based or safety-based?

- Temperature measurement will be proposed
 - □ UL exemption issue
- Other follow-up work
 - Stress testing
 - □ Under- and over-voltage

м

Lighting product testing efforts

- National Lighting Product Information Program (NLPIP)
- Program for the Analysis and Evaluation of Residential Lighting (PEARL)
- ENERGY STAR® "Durability" testing
- Field Test DELTA (Design and Evaluation of Lighting Technologies and Applications)
- Ongoing testing (time permitting)

Field Test DELTA

- Helps lighting manufacturers evaluate products before widespread commercialization
- If poor results, identify improvement opportunities
- If positive results, publish case study
 - □ Product description
 - □ Field test site
 - Methodology
 - □ Occupant feedback
 - □ Performance of product
 - □ Energy savings
 - Recommendations

Demonstration and Evaluation of Lighting Technologies and Applications

Field Test DELTA - Skylight

- Installed four units in CT warehouse
- Significant energy savings, despite long hours of operation
- Occupants appreciated connection to exterior
- Commercialization underway

Field Test DELTAs

- Integrated skylight luminaire (January 2003)
- Occupancy sensing staircase lighting (Fall 2003)
- Photovoltaic pole light (Winter 2003)

.

Lighting product testing efforts

- National Lighting Product Information Program (NLPIP)
- Program for the Analysis and Evaluation of Residential Lighting (PEARL)
- ENERGY STAR® "Durability" testing
- Field Test DELTA (Design and Evaluation of Lighting Technologies and Applications)
- Ongoing testing (time permitting)

Ongoing NLPIP Research

- Instant-start systems
- Pulse-start metal halide lumen maintenance

M

Long-term Testing

- Previous research
 - Focused on Rapid-Start ballasts and starting characteristics
 - □ R_H/R_C emerged from this research and correlated to lamp life
 - Now we would like to focus on Instant-Start ballasts and starting and operating characteristics

7

Long-term Testing Linear Systems

- Linear T8 Instant-Start Fluorescent Systems
 - □ Four Cycles
 - 5 min on/ 20 min off
 - 1 hr on/ 20 min off
 - 3 hr on/ 20 min off
 - Continuous
 - □ Six unique systems

Linear Systems

ANSI illustrated starting waveform used to calculate starting time (t = t₃-t₁)

A sample measured current waveform

Linear Systems

We believe damage during starting is related to the voltage not the current

B3 voltage

B9 voltage

ĸ.

Long-term Testing

×

Long-term Testing

- Instant-start systems
- Pulse-start metal halide lumen maintenance

Pulse Start Metal Halide Lumen Maintenance

Objectives:

Evaluate standard and pulse start MH lamp initial and mean lumen output

Validate pulse start MH lamp "energy story" against standard MH lamp

100

Pulse Start vs. Standard Metal Halide Lamp Manufacturer claims

- 20% increased initial lamp efficacy.
- Superior lumen maintenance
 - □ (80% vs.65% at 40% rated life for 400w),
 - □ over 40% higher mean lumens (40% life)
- Up to 50% faster warm-up and restrike time
- Up to 50% increase in life
- Color uniformity: CCT +/-150K vs. +/-300K during life

M

Plan of Study

Lamp Type

Lamp Type	Specification	Venture	GE	Philips	OSI
Standard 250W	MH250w/U	6 lamps	6 lamps		
Pulse Start 250W	MS250w/BU/PS	6 lamps	6 lamps		
Standard 400W	MH400W/U			6 lamps	6 lamps
Pulse Start 320W	MS320W/BU/PS			6 lamps	6 lamps

Ballast Type

- ☐ Life test one Advance CWA ballast, base up
- Measurement on standard reference reactor ballast, base up

Measurement Variables

- Initial Test: after 100hr seasoning
 - Initial Lumens
 - □ System efficacy & lamp efficacy
 - □ Color variation
- Life Test: (40% rated lamp life):
 - Mean lumen output
 - □ Life time behavior
 - □ Color variation

M

Initial Testing Results

Test Lamp	Light Output	Efficacy Mean	Efficacy Stdev	CRI Mean	CRI Stdev	CCT Mean	CCT Stdev
Mfgr A 320W Pulse Start	30368	94.9	3.0	67.3	0.5	3969	257
Mfgr A 400W Probe Start	37640	94.1	2.7	59.4	2.1	3897	201
Mfgr B 320W Pulse Start	30240	94.5	2.1	64.8	1.8	4779	158
Mfgr B 400W Probe Start	37800	94.5	7.5	64.3	1.5	4509	79
Mfgr C 250W Pulse Start	21950	87.8	2.0	69.6	1.0	4697	505
Mfgr C 250W Probe Start	20475	81.9	1.8	61.6	1.7	4382	462
Mfgr D 250W Pulse Start	26000	104.0	2.2	61.7	0.5	4371	237
Mfgr D 250W Probe Start	20650	82.6	3.9	63.4	1.0	4459	213

